Mitotic disturbances and micronucleus induction in Syrian hamster embryo fibroblast cells caused by asbestos fibers.

نویسندگان

  • E Dopp
  • J Saedler
  • H Stopper
  • D G Weiss
  • D Schiffmann
چکیده

Asbestos and other mineral fibers have long been known to induce lung cancer and mesothelioma. However, the primary mechanisms of fiber-induced carcinogenesis still remain unclear. We investigated the occurrence of mitotic disturbances induced by asbestos (amosite, crocidolite, chrysotile) in an in vitro approach using Syrian hamster embryo (SHE) fibroblast cells. The following endpoints were investigated: micronucleus formation as a result of mitotic disturbances and characterization of the induced micronucleus population by kinetochore staining and visualization of the spindle apparatus. Supravital UV-microscopy was used to analyze changes in interphase chromatin structure, impaired chromatid separation, and blocked cytokinesis. All three asbestos fiber types induced a high frequency of micronucleus formation in SHE cells (> 200/2000 cells) in a dose-dependent manner (0.1-5.0 micrograms/cm2), with a maximum between 48 hr and 66 hr exposure time. At higher concentrations (more than 5.0 micrograms/cm2) the micronucleus formation decreased again as a result of increased toxicity. Kinetochore staining of micronuclei revealed that 48 +/- 2% of asbestos-induced micronuclei reacted positively with CREST (antikinetochore) serum. Furthermore, spindle apparatus deformations occurred in cells with disturbed metaphases and anaphases, while the spindle fiber morphology appeared unchanged. Our results show that asbestos fibers may cause both loss and breakage of chromosomes in the absence of direct interaction with spindle fibers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of prostaglandin synthetase in the peroxidative metabolism of diethylstilbestrol in Syrian hamster embryo fibroblast cell cultures.

The mechanism for induction of tumors by estrogens is still unresolved. Neoplastic transformation of Syrian hamster embryo fibroblasts by diethylstilbestrol (DES) suggests that established principles of chemical carcinogenesis may be involved. The Syrian hamster embryo fibroblast cells provide a system in which now the question can be asked whether the metabolic activation of DES is a prerequis...

متن کامل

Involvement of Prostaglandin Synthetase in the Peroxidative Metabolism of Diethylstilbestrol in Syrian Hamster Embryo Fibroblast Cell Cultures1

The mechanism for induction of tumors by estrogens is still unresolved. Neoplastic transformation of Syrian hamster em bryo fibroblasts by diethylstilbestrol (DES) suggests that estab lished principles of chemical carcinogenesis may be involved. The Syrian hamster embryo fibroblast cells provide a system in which now the question can be asked whether the metabolic activation of DES is a prerequ...

متن کامل

Correlation of asbestos-induced cytogenetic effects with cell transformation of Syrian hamster embryo cells in culture.

The cytogenetic effects of chrysotile asbestos on Syrian hamster embryo cells in vitro were investigated at doses which induced morphological and neoplastic transformation but which failed to induce measurable gene mutations in the cells at two genetic loci. Chrysotile asbestos treatment of the cells significantly induced chromosome changes in a dose-dependent manner. Up to 50% of the cells had...

متن کامل

Role of phagocytosis in Syrian hamster cell transformation and cytogenetic effects induced by asbestos and short and long glass fibers.

We have shown previously that asbestos and other mineral dusts, including glass fibers, induce cell transformation and chromosomal mutations in Syrian hamster embryo cells in culture. In the present study, we observed that both asbestos and glass fibers were phagocytized by these cells and accumulated in the perinuclear region of the cytoplasm. In order to understand the mechanism of fiber leng...

متن کامل

Putative inhibitory effects of chrysotile, crocidolite, and amosite mineral fibers on the more complex surface membrane glycolipids and glycoproteins

Syrian hamster embryo cells were treated with galactose oxidase, followed by reduction with tritiated sodium borohydride at pH 7.4. The labeling patterns of galactosyl and N-acetyl galactosaminyl residues on the cell surface were altered in comparing scraped vs. unscraped and buffer vs. media-soaked cells treated with galactose oxidase. From these preliminary studies, the procedure to be used i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental Health Perspectives

دوره 103  شماره 

صفحات  -

تاریخ انتشار 1995